
Questa versione hitech del vecchio “dica 33” permetterebbe alle persone di controllarsi quotidianamente a casa, per scoprire in tempo reale se rischiano di aver contratto il virus e se devono sottoporsi al tampone diagnostico. “L’implementazione di questo strumento – spiega il ricercatore Brian Subirana – potrebbe rallentare la diffusione della pandemia se tutti lo usassero prima di andare a scuola, in fabbrica o al ristorante”.
Simili sistemi di intelligenza artificiale sono da tempo allo studio per la diagnosi e il monitoraggio di malattie respiratorie come asma e polmonite, ma non solo. Il gruppo del Mit, in particolare, aveva iniziato a sviluppare una rete neurale (chiamata ResNet50) per riconoscere i malati di Alzheimer dalla forza espressa dalle loro corde vocali durante il colpo di tosse indotto. Con lo scoppio della pandemia hanno provato ad adattare il sistema addestrandolo a riconoscere i pazienti Covid. Lo hanno fatto dando in pasto all’algoritmo migliaia di registrazioni audio di colpi di tosse raccolte sul web grazie alla collaborazione di volontari sani e non, inclusi soggetti colpiti dal nuovo coronavirus (sia sintomatici che asintomatici). Il sistema, messo alla prova con mille nuove registrazioni audio, ha dimostrato di identificare i soggetti infetti con un’accuratezza del 98,5%, inclusi gli asintomatici che vengono smascherati nel 100% dei casi.
