Schizofrenia: il machine learning identifica due sottotipi

(Reuters Health) – In uno studio USA un approccio di machine learning alla risonanza magnetica e alle misure cliniche ha identificato due sottotipi neuroanatomici della schizofrenia. “I pazienti con diversi profili neuroanatomici potrebbero rispondere in modo diverso ai vari trattamenti – dice Christos Davatzikos della Perelman School of Medicine dell’Università della Pennsylvania a Philadelphia, autore principale dello studio – I trial dovrebbero potenzialmente valutare separatamente gli effetti del trattamento per questi due gruppi”.

Precedenti studi avevano già suggerito l’associazione di profili dei sintomi nella schizofrenia a diverse caratteristiche neuroanatomiche, ma le “firme cerebrali” si sovrappongono, come hanno notato Davatzikos e colleghi notano su Brain.

Lo studio
Il team ha applicato un metodo di machine learning recentemente sviluppato, chiamato Hydra, per analizzare la risonanza magnetica e le misure cliniche in 307 pazienti con schizofrenia consolidata e in 364 controlli sani nel tentativo di scoprire i modelli associati alla malattia.

Hydra ha identificato due sottotipi altamente riproducibili. Il sottotipo 1 mostrava deficit della materia grigia in modo più evidente nel talamo, nel nucleo accumbens, nel tempo mediale, nella corteccia prefrontale e insulare mediale, nonché riduzioni diffuse nei volumi di sostanza bianca, rispetto ai controlli sani.

Al contrario, il sottotipo 2 presentava una normale anatomia cerebrale, ad eccezione dei volumi di sostanza grigia più grandi nei gangli della base e del volume di sostanza bianca relativamente più grande nelle strutture profonde,